アンカーベンとネットを併用した外壁改修工法に関する研究
（その4 熱冷繰り返しによる耐久性の評価）

○近藤照夫1) 渡邉敬三2) 本橋健司3) 沖辺博司4) 矢野瑞穂5)

1. はじめに

本外壁改修工法は、損傷に対する一般的な補修を施した既存仕上げ層を下地として、アンカーベンとネットを併用したポリマーディスパージョン入りモルタル（フィラー）を塗り付ける工法である。

したがって、本改修工法を施した外壁面が日射や降雨による加熱冷却を受けると、壁体は膨張収縮を繰り返すことになる。この膨張収縮の繰り返しによって、開口コンクリート、既存モルタル層および本改修層は各々異なった挙動を示して、各々の接着界面で破壊を生じる可能性が考えられる。

このような背景から加熱冷却を繰り返すことにより、本工法で改修を施した壁体がどのような挙動を示すかを実大規模の試験体で実験した。本報では、その実験結果から改修後における壁体の耐久性について検討した内容を報告する。

2. 実験方法
2.1 試験体
(1) 使用材料と調合
打設したコンクリートに使用した材料を表1に示す。その調合を表2に示す。

配筋は径13mmの異形鉄筋を100mm間隔とした。

<table>
<thead>
<tr>
<th>材料の種類</th>
<th>セメント</th>
<th>細骨材</th>
<th>粗骨材</th>
<th>混和剤</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用銘柄</td>
<td>高強度コンクリート</td>
<td>湘南高圧モルタル</td>
<td>町屋川木系産</td>
<td>AE減水剤</td>
</tr>
</tbody>
</table>

表2. コンクリートの調合 [kg/m³]

<table>
<thead>
<tr>
<th>材料</th>
<th>セメント</th>
<th>水</th>
<th>細骨材</th>
<th>粗骨材（砂利）</th>
<th>粗骨材（砂）</th>
<th>混和剤</th>
</tr>
</thead>
<tbody>
<tr>
<td>単位量</td>
<td>334</td>
<td>177</td>
<td>451</td>
<td>312</td>
<td>599</td>
<td>444</td>
</tr>
<tr>
<td>水セメント比</td>
<td>53%</td>
<td>細骨材率</td>
<td>43.6%</td>
<td>スランプ</td>
<td>18cm</td>
<td></td>
</tr>
</tbody>
</table>

また、既存モルタルに使用した材料は表3に示すとおりで、調合はセメント：砂＝1:2(容積比)、フロー185mmとした。

<table>
<thead>
<tr>
<th>材料</th>
<th>セメント</th>
<th>砂</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用銘柄</td>
<td>普通ポルトランドセメント</td>
<td>八甲田産山砂</td>
</tr>
</tbody>
</table>

なお、本改修工法については、その1に記された標準的な材料と工法を適用した。

2.2 製作工法
試験体のコンクリート（1500mm×1500mm×厚さ150mm）は中板型枠を使用した平打ちとして、脱型後は中板面を試験対象として厚さ20mmのモ

Study on a new renewal method for external walls by application of net overlaying and anchoring

Part 4. Evaluation of durability in heat cycle

1) 清水建設㈱ 2) 昭和女子大学 3) 建設省建研研究所 4) 竹中工務店 5) 戸田建設㈱
ルタル塗りを実施した。モルタル塗り前のコンクリート表面中央部の幅 500mm部分に油性系離型剤（㈱八ケ乡製グラックスー SVC-2）を塗付して、モルタルの浮きを設定した。
また、本改修工法を施さない比較用試験体は既存モルタルの施工までは同様に製作した。
製作した試験体の形状とモルタルの浮きやビン、CC熱電対の設定概要を図 1 に示す。

また、テストハンマーで試験体表面を打撃して、モルタルの浮きの経時変化を観察した。
(3)モルタルの引張接着試験
加熱冷却試験が終了した本改修工法を施した試験体に45mm×45mmの切り込みをカッターで切り付けた後、40mm×40mmのアタッチメントをエポキシ樹脂系接着剤で張りつけて建研式引張試験機（山本扛重機㈱製 LPT-1500）を用いて引張接着強度を測定した。その後、破断位置を目視観察した。
(4)アンカーピンの引抜き耐力試験
加熱冷却試験が終了した本改修工法を施した試験体にモルタル側からアンカーピン頭部にタッピングビスを打ち込んだ後、引抜試験装置をセットして最大荷重を測定した。
3．実験結果と考察
3.1 加熱冷却の状況
試験体の表面は20℃から70℃～80℃の間の温度変化を受けており、裏面は20℃～40℃前後の温度履歴にさらされていた。温度計測データを見るかぎり、実験計画で設定した加熱冷却の条件をほぼ満足していると判断される。
3.2 表面状態の変化
本工法を施していない比較用試験体では加熱冷却を加えるに少し、中央部やモルタルの浮きを設定した両端部でひび割れが既に発生していた。一方、本工法を施した試験体では加熱冷却2サイクルおよび3サイクル終了後に、中央部にひび割れが発生した。
本改修層にはポリマーディスパージョンを混入したモルタル（フィラー）が使用されているため、ひび割れを抑制する効果があると判断される。
3.3 浮きの経時変化
加熱冷却を繰り返した際の試験体におけるモルタルの浮き面積の経時変化を図 2 に示す。
図2. モルタルの浮き面積の経時変化

本工法を施していない比較用試験体では加熱前に既に50%以上の面積でモルタルの浮きを生じていた。1サイクル終了後にはほぼ100%の面積に浮きが拡大して、4サイクル終了後には試験体全面でモルタルの浮きが確認されている。一方、本工法を施した試験体の加熱前には、試験計画で設定した浮き状態より少なめ（浮き面積24%）に試験体が製作されていた。1サイクル終了後に50%強の面積に浮きが拡大して2サイクル終了した時点で、75%の面積に浮きが広がっている。さらに、5サイクル終了後に85%の面積にモルタルの浮きが拡大して、8サイクル以降は浮きの進行がなく最終的には88%程度の浮き面積に止まっている。

一般にこのような加熱冷却による促進劣化試験では冷却の方法として散水を適用するが、水を与えるとセメント系材料にとっては養生となり危険側の評価になるとの判断から、本実験では散水を実施しないことにした。しかし、得られた結果によると試験計画で設定した加熱速度は激激であり、散水を実施しないで放冷する冷却方法を採用したため、加熱冷却の条件は一般に適用されている方法より過酷であったと推定される。したがって、モルタルの浮きは急速に進行しているが、本工法を施すと加熱冷却によるモルタルの浮き進行を抑制する効果は大きいと判断できる。

3.4 モルタルの接着強度と破断位置

本工法を施した試験体におけるモルタルの引張接着試験の結果を表4に示す。

表4. モルタルの接着強度と破断位置

<table>
<thead>
<tr>
<th>測定位置</th>
<th>接着強度 (kgf/cm²)</th>
<th>破断位置の割合 (%)</th>
<th>平均</th>
<th>標準偏差</th>
<th>変動係数 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No *1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.18</td>
<td>60</td>
<td>7.561</td>
<td>1.87</td>
<td>24.8</td>
</tr>
<tr>
<td>2</td>
<td>5.94</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.70</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.80</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.31</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.36</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7.31</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.98</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10.71</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.51</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.29</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.36</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7.90</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9.03</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7.81</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 測定位置No

*2 破断位置の表示

【図】アンカーピン打込み位置

加熱冷却を受けた後の本工法の試験体における引張接着強度は平均で7.56 kgf/cm²であり、破断位置は主として本改修層の内部および改修層と
既存モルタルの接着界面で生じている。本工法の標準的な引張接着強度の値11.4kgf/cm²程度と比較すると、66%程度の強度保有率になっており、また、試験体におけるモルタルの浮き分布と接着強度あるいは破壊形式との関係性は特に見出せない。

アンカービンを打ち込んだ箇所（No.13～18）においても本改修層の凝結破壊が支配的であり、これらの接着強度は平均で7.5kgf/cm²で他の部分と比較しても全く差が認められない。このことから、ステンレス鋼製アンカービンは本工法に適応されているポリマーディスパージョン混入モルタルとのなじみが良いと判断できる。

試験方法は異なるが、材料レベルで加熱冷却を繰り返した場合の接着強度はほぼ100%の強度保有率であり、今回の試験体作製時においては特に強度低下の要因は考えられない。これらのことから、本実験における加熱冷却の条件が浮きの経時変化で前述したように過酷すぎたと推定され、本工法に適用されているポリマーディスパージョン混入モルタルの凝集力や既存モルタルとの界面接着強度が低下したと思われる。

以上のようなことを考慮すると、本実験で得られた引張接着強度の測定値が標準的な値より低下していることは、本工法の適用上特に問題とはならないと判断される。

3.5 アンカービンの引抜き耐力

本工法を施した試験体におけるアンカービンの引抜き耐力を測定した結果を表5に示す。

コンクリートに対する引込み深さ30mmの場合における当該アンカービンの平均引抜き耐力は280kgfであり、本実験結果における測定値は引込み不足の3本を除けばこの程度の加熱冷却を繰り返しても、当該アンカービンが本来保有している引抜き耐力を保持していると判断される。

| 表5. アンカービンの引抜き耐力 |

<table>
<thead>
<tr>
<th>測定位置</th>
<th>最大荷重（kgf）</th>
<th>測定位置の状況</th>
<th>引抜き後アンカービンの状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>1320</td>
<td>熱冷試験後に浮き発生</td>
<td>記載あり</td>
</tr>
<tr>
<td>No.14</td>
<td>190</td>
<td>熱冷試験後に浮き発生</td>
<td>打込み不足</td>
</tr>
<tr>
<td>No.15</td>
<td>580</td>
<td>既存モルタル浮き設定位置</td>
<td>ファイブの曲がり</td>
</tr>
<tr>
<td>No.16</td>
<td>190</td>
<td>既存モルタル浮き設定位置</td>
<td>打込み不足</td>
</tr>
<tr>
<td>No.17</td>
<td>250</td>
<td>熱冷試験後に浮き発生</td>
<td>記載あり</td>
</tr>
<tr>
<td>No.18</td>
<td>190</td>
<td>熱冷試験後に浮き発生</td>
<td>打込み不足</td>
</tr>
</tbody>
</table>

*1 表4の表示に準じる。

また、熱冷繰り返し試験によってモルタルの浮きが新たに進行しても、アンカービンの引抜き耐力の低下は少ないと推定される。さらに、アンカービンが曲がって打ち込まれると本来の耐力より大きな引抜き抵抗を示す。しかし、打込み不足であるとかなり引抜き耐力低下するため、施工は入念に施しなければならない。

ピッの打ち込み間隔の中央部を支点としてモルタルが熱膨張して浮き上がり応力を求めると、既存モルタルの厚さが20mmあるいは50mmの場合には500mm間隔のピッ1本当たり3あるいは7kgf程度となり、これらの値に対してピッの引抜き耐力は十分な余力があるといえる。

4.まとめ

熱冷繰り返し試験の結果から、以下のようなことがいえる。

(1)本工法を施すと乾燥収縮による面ひび割れが普通モルタルより少なく、加熱冷却によるモルタルの浮き進行を抑制する効果が大きい。

(2)本実験におけるモルタル引張接着強度の低下は、本工法の適用上特に問題とはならない。

(3)当該工法に適用されているアンカービンは加熱冷却を繰り返し受けても、本改修層とのなじみが良く保有引抜き耐力を保持している。また、モルタルの浮きが新たに進行しても、アンカービンの引抜き耐力の低下は少ない。